Obliczanie stanu generatora liczb pseudolosowych – na przykładzie Math.random() z Firefoksa

01 września 2016, 08:25 | Teksty | komentarzy 11
: oglądaj sekurakowe live-streamy o bezpieczeństwie IT.
W niniejszym tekście:

  • Poznamy ogólną zasadę działania generatorów liczb pseudolosowych
  • Dowiemy się jak działa algorytm XorShift128Plus będący podstawą generatorów liczb pseudolosowych we wszystkich najpopularniejszych przeglądarkach (Firefox, Chrome, Edge)
  • Poznamy narzędzie Z3Prover, dzięki któremu będziemy w stanie obliczyć stan generatora liczb pseudolosowych na podstawie trzech znanych liczb.

W rzeczywistych przypadkach, poznanie stanu generatora liczb losowych może pozwolić np. na odgadnięcie kolejnych tokenów sesyjnych.

Inspiracja

Bezpośrednią inspiracją do napisania tego artykułu było zadanie random4 z bardzo ciekawego zestawu łamigłówek return true to win. Każde zadanie zawiera krótki fragment kodu ze zdefiniowaną funkcją zwracającą wartość boolowską. Zadaniem rozwiązującego jest przekazanie takich parametrów do funkcji, aby zwróciła ona wartość true. Nie zawsze jest to proste, zazwyczaj wymaga znajomości niuansów standardu ECMAScript lub, idąc jeszcze dalej, specyficznych cech JavaScriptu w przeglądarkach. Polecam spróbować zmierzyć się z tymi zadaniami, bo pozwalają lepiej poznać najistotniejszy język programowania świata webu.

Wróćmy jednak do zadania random4. Kod wyglądał następująco:

Jak widzimy, do zmiennej rand przypisywana jest wartość losowa wygenerowana przez Math.random(). W kolejnym kroku, musimy wywołać funkcję random4 z takim parametrem, żeby zwróciła ona true. Innymi słowy, nasz parametr musi być równy wcześniejszej wartości Math.random()… Gdy już wszystkie pomysły zawiodły i wyglądało na to, że nie wchodzi tutaj w grę żadna specyficzna cecha Javascriptu (lub błąd w przeglądarce), zadanie sprowadziło się do innego problemu: trzeba ustalić stan generatora liczb pseudolosowych!

Jak działają generatory liczb pseudolosowych

Pomijając zastosowania kryptograficzne, gdzie wiele uwagi poświęca się temu, by liczby losowe były w istocie losowe, w pozostałych dziedzinach mamy zazwyczaj do czynienia z liczbami pseudolosowymi. Metody generowania liczb pseudolosowych są różne – w zależności od tego z jakiego skorzystamy algorytmu – ale zasadniczo sprowadzają się do kilku kroków:

  1. Do generatora liczb pseudolosowych przekazujemy ziarno (ang. seed). W ten sposób ustalany jest stan (ang. state) generatora.
  2. Generator wykonuje operacje arytmetyczne, na podstawie których oblicza nową wartość stanu.
  3. Na podstawie stanu generatora, wyliczana jest nowa wartość pseudolosowa.

Charakterystyczną cechą generatorów liczb pseudolosowych jest fakt, że podanie tego samego ziarna skutkuje wygenerowaniem takiej samej sekwencji liczb.

Powtarzalność generatorów liczb pseudolosowych przy takim samym stanie jest cechą pożądaną, pozwala bowiem odtworzyć przepływ działania programu, np. w razie wystąpienia jakiegoś błędu.

Generatory liczb pseudolosowych w przeglądarkach

We wszystkich najpopularniejszych przeglądarkach internetowych (czyli w Chromie, Firefoksie oraz Edge’u) stosowany jest ten sam algorytm generowania liczb pseudolosowych: XorShift128+. W dalszej części tekstu będę jednak odnosił się wyłącznie do implementacji z Firefoksa ze względu na fakt, że jest ona – moim zdaniem – najczytelniejsza.

Zobaczmy więc odpowiedni fragment kodu z silnika Gecko:

Jak widać w powyższym kodzie, stan generatora XorShift128+ składa się z dwóch liczb 64-bitowych. Zaś obliczenie kolejnej liczby pseudolosowej polega na przeliczeniu nowej wartości jednej z liczb stanu (co sprawdza się do kilku przesunięć bitowych oraz operacji XOR), a następnie dodaniu do siebie dwóch liczb stanu.

Wnikliwi czytelnicy zauważą, że XorShift128+ generuje 64-bitowe liczby całkowite, zaś funkcja Math.random() zwraca liczbę zmiennoprzecinkową z zakresu [0, 1). Jak więc ten uint64_t jest zamieniany na double? Na to pytanie odpowiada kolejna funkcja ze źródeł: nextDouble.

Kod sprowadza się się do tego, że z wygenerowanej wartości 64-bitowej pobierane są 53 najmłodsze bity, które następne są dzielone przez 253. W ten sposób mamy gwarancję, że dostaniemy liczbę z zakresu [0,1). Nie było sensu brać do dzielenia większej liczby bitów, ponieważ typ danych double nie jest i tak w stanie pomieścić większej precyzji.

O ile wszystkie najpopularniejsze przeglądarki korzystają z algorytmu XorShift128+, o tyle każda z nich ma swój własny sposób na zamianę uint64_t na double. Dlatego kod, który napiszemy pod Firefoksa nie będzie kompatybilny z innymi przeglądarkami, choć będzie wymagał tylko nieznacznych poprawek.

Jako proste ćwiczenie, będące bazą do naszych dalszych operacji, przepiszmy kod generujący liczby pseudolosowe do Pythona.

Powyższy kod jest praktycznie dosłownym przełożeniem kodu C++ na Pythona. Klasa XorShift128PlusFirefox w konstruktorze przyjmuje dwie wartości określające stan generatora; funkcja next() pozwala wygenerować kolejną 64-bitową liczbę całkowitą, zaś next_double() – kolejną liczbę typu zmiennoprzecinkowego z zakresu [0,1).

W kodzie funkcji next_double() widzimy użycie pythonowej funkcji float(). W Pythonie zdefiniowany jest tylko jeden typ zmiennoprzecinkowy. Odpowiada on typowi double znanemu z C/C++, jednak nazwany został float.

Przykładowe użycie klasy XorShift128PlusFirefox możemy zobaczyć na Rys 1. Wygenerowane zostały dwie liczby pseudolosowe na podstawie podanego stanu.

Rys 1. Wygenerowanie dwóch liczb losowych algorytmem XorShift128+

Rys 1. Wygenerowanie dwóch liczb losowych algorytmem XorShift128+

Narzędzie Z3Prover

Wiemy już jak działa generator liczb losowych w Firefoksie, napisaliśmy nawet jego implementację w Pythonie. Powoli zbliżamy do meritum tego tekstu, czyli do ustalania stanu generatora na podstawie znajomości kilku jego liczb. Wcześniej jednak poznajmy narzędzie, dzięki któremu uda nam się to osiągnąć: Z3Prover.

Z3Prover to narzędzie klasy SMT solver – pozwala na automatyczne dowodzenie twierdzeń. Krótko mówiąc: narzędzie jako wejście przyjmuje zestaw warunków logicznych (które mogą składać się między innymi z operacji arytmetycznych oraz bitowych), a następnie próbuje przeliczyć, czy istnieją dane wejściowe, dla których te warunki są spełnione. Kilka przykładów zobaczymy poniżej.

Aby móc zacząć używać Z3Prover, należy najpierw skompilować jego źródła lub pobrać pliki binarne. Polecam użyć tej drugiej opcji. Po rozpakowaniu plików binarnych, należy uruchomić Pythona w tym samym katalogu, w którym zostały one rozpakowane i wywołać polecenie:

Przykład 1

Zaczynamy od trywialnego przykładu: definiujemy dwa symbole, będące zmiennymi boolowskimi, i sprawdzamy kiedy ich koniunkcja będzie równa prawdzie. Oczywiście z3 zwraca nam odpowiedź, że równanie jest spełnione, gdy obie zmienne są prawdziwe.

Rys 2. Proste użycie z3

Rys 2. Proste użycie z3

Przykład 2

W z3 możemy również operować na liczbach. W tym przykładzie zdefiniowaliśmy dwie liczby całkowite, a następnie próbujemy rozwiązać równanie: 4*a+7*b=9 przy założeniu, że a<5 oraz b>a.

Rys 3. Operowanie na liczbach całkowitych w z3

Rys 3. Operowanie na liczbach całkowitych w z3

Przykład 3

Kolejnym typem danych, który poznajemy jest BitVec – jest to liczba całkowita o zadanej przez nas liczbie bitów. Następnie próbujemy rozwiązać równanie, w którym łączymy ze sobą zarówno operatory bitowe, jak i arytmetyczne.

Rys 4. Operowanie na liczbach o określonej liczbie bitów

Rys 4. Operowanie na liczbach o określonej liczbie bitów

Przykład 4

Z3 można równie dobrze wykorzystać do upraszczania pewnych wyrażeń w postaci symbolicznej, zamiast ich obliczania.

Rys 5. Wykorzystanie z3 do upraszczania wyrażeń

Rys 5. Wykorzystanie z3 do upraszczania wyrażeń

„Łamanie” generatora liczb

Nadeszła pora na napisanie „łamacza” generatora liczb losowych, co sprawdza się do kilku elementów:

  • Za pomocą z3 zapiszemy postać symboliczną trzech kolejnych liczb losowych generowanych algorytmem XorShift128+,
  • Trzy kolejne liczby zmiennoprzecinkowe wygenerowane przez Math.random() zamienimy na liczby całkowite,
  • Na podstawie powyższych danych, wygenerujemy trzy równania ze zmiennymi s0 i s1, których rozwiązanie pozwoli nam ustalić stan generatora liczb pseudolosowych.

Zacznijmy więc od podstawowych definicji:

Mamy klasę Cracker, w której definiujemy zmienne s0 i s1 zawierające stan generatora oraz zmienną state zawierającą to samo, ale w postaci tablicy. Pole solver przechowuje klasę Solver z z3, która przyjmuje równania do rozwiązania. Do pola known z kolei przekażemy znane wartości liczb pseudolosowych, które wygenerujemy dzięki metodzie Math.random() z Firefoksa.

Zaimplementujmy więc metodę next() generatora:

Metoda next() wygląda właściwie identycznie jak w oryginalnym kodzie Firefoksa. Jedyną różnicą jest zastosowanie funkcji z3.LShR zamiast operatora  >>. Wynika to z faktu, że w z3 operator >> jest arytmetycznym przesunięciem bitowym w prawo. Co za tym idzie, jeżeli bit znaku będzie równy 1, to zostanie on zachowany. LShR to z kolei logiczne przesunięcie bitowe w prawo, które zapewnia nam, że najstarszy bit będzie zawsze ustawiony na 0.

Zobaczmy, z ciekawości, jak w postaci symbolicznej wyglądają liczby losowe po dwóch pierwszych wywołaniach funkcji next() (Rys 6.)

Rys 6. Dwa pierwsze wywołania next() w postaci symbolicznej

Rys 6. Dwa pierwsze wywołania next() w postaci symbolicznej

Po pierwszym wywołaniu next() postać symboliczna jest niemal dokładnie taka sama jaką widzieliśmy w kodzie tej metody. Po drugim wywołaniu sytuacja zaczyna się już bardziej komplikować: widzimy bardziej zawiły opis liczby, choć nadal jedynymi zmiennymi, do których się on odnosi są s0 i s1.

Teraz wygenerujemy w Firefoksie trzy liczby losowe, przy czym:

  • Pierwsza liczba losowa będzie równa postaci symbolicznej liczby po pierwszym wywołaniu next(),
  • Druga liczba losowa będzie równa postaci symbolicznej liczby po drugim wywołaniu next(),
  • Trzecia liczba losowa będzie równa postaci symbolicznej liczby  po trzecim wywołaniu next().

Do rozwiązania pozostał nam jeden istotny problem: funkcja next() zwraca liczbę w postaci uint64_t, zaś z Firefoksa dostaniemy liczby zmiennoprzecinkowe. Będziemy musieli więc musieli je przekształcić z powrotem na liczby całkowite. To jednak nie będzie trudne. Jak pamiętamy Firefox wyciągał z 64-bitowej liczby jej 53 najmłodsze bity, a następnie dzielił przez 253. Więc my po prostu odwrócimy ten proces. Liczbę, którą dostaniemy z Firefoksa pomnożymy przez 253, a z liczby, którą będziemy mieli w postaci symbolicznej, wyciągniemy tylko 53 bity. W efekcie dostaniemy dwie 53-bitowe liczby całkowite do porównania. Popatrzmy na kod samego „łamacza”:

W powyższym kodzie iterujemy po znanych wartościach liczb losowych. Wartości typu double mnożymy przez 253 i porównujemy je z 53 najmłodszymi bitami liczby wygenerowanej przez wywołanie next(). Takie równania wrzucamy do solvera z z3. Następnie wywołujemy metodę solver.check() rozwiązującą podane przez nas równania. Jeżeli metoda zwróci wartość z3.sat, to oznacza, że równania udało się rozwiązać. Wyliczone wartości możemy pobrać odwołując się do modelu. Ostatecznie, funkcja zwraca wartości s0 i s1 będące stanem generatora liczb losowych.

Wygenerowałem więc w Firefoksie trzy kolejne liczby losowe:

  • 0.8629073810129263,
  • 0.19187870241845773,
  • 0.07371019627869657.

Zobaczmy, czy nasz Cracker będzie w stanie ustalić stan generatora (Rys 7.).

Rys 7. Ustalenie stanu generatora na podstawie trzech liczb

Rys 7. Ustalenie stanu generatora na podstawie trzech liczb

Sukces! Dzięki z3 odtworzyliśmy stan generatora. Spróbujmy teraz wykorzystać ten stan jako argument do wcześniej napisanego przez nas generatora (klasa XorShift128PlusFirefox) i zobaczmy, czy rzeczywiście wygeneruje takie same liczby (rys 8).

Rys 8. Wykorzystanie obliczonego stanu do ponownego wygenerowania liczb

Rys 8. Wykorzystanie obliczonego stanu do ponownego wygenerowania liczb

Dostaliśmy taką samą sekwencję, jaką wygenerował Firefox, co pokazuje, że nasza pythonowa implementacja łamania i generowania kolejnych liczb pseudolosowych jest poprawna.

Rozwiązanie problemu z zadania random4

Pozostaje więc rozwiązać problem ze wspomnianego na początku zadania random4. Ze względu na specyfikę tamtego zadania, my mogliśmy wygenerować dowolnie dużo liczb losowych, jednak musieliśmy ustalić jaka liczba została wygenerowana przed naszymi wywołaniami Math.random(). Okazuje się, że przy aktualnym kodzie rozwiązanie takiego problemu jest łatwe: po przeliczeniu stanu generatora, nie będziemy wywoływać metody next() (ona powoduje bowiem obliczenie nowego stanu), tylko wygenerujemy liczbę na podstawie stanu, który znamy.

Poniżej pełny kod rozwiązania – zmiany opisane w akapicie powyżej są odzwierciedlone w metodzie current_double(). Ponadto został dodany kod, dzięki któremu do skryptu pythonowego można przekazać argument zawierający trzy oddzielone od siebie przecinkami liczby wygenerowane w Math.random().

Jako ostateczny test poprawności rozwiązania: wygeneruję w Firefoksie cztery kolejne liczby pseudolosowe, przekażę trzy ostatnie do crackera i zobaczę, czy zostanie wygenerowana ta pierwsza (Rys 8.).

Rys 8. Ostateczny test crackera

Rys 8. Ostateczny test crackera

Podsumowanie

We wszystkich popularnych dzisiaj przeglądarkach internetowych generowanie liczb pseudolosowych odbywa się z użyciem algorytmu XorShift128+. Generowanie kolejnych liczb polega na wykonaniu kilku prostych operacji arytmetyczno-logicznych, a co za tym idzie znając kilka kolejnych liczb, możemy ustalić stan generatora co pozwoli zarówno na przeliczenie jakie liczby zostaną wygenerowane następnie, jak również ustalenie liczb wygenerowanych wcześniej. W artykule pokazano jak użyć narzędzia z3 do ustalenia stanu generatora, co pozwoliło na „odgadnięcie” jaka liczba pseudolosowa została wygenerowana w Firefoksie przed trzema liczbami podanymi jako argument do programu.

Artykuł pokazuje również, że metoda Math.random() nie powinna być stosowana w zastosowaniach kryptograficznych. W JavaScripcie, do celów kryptograficznych powinno się używać metody getRandomValues().

– Michał Bentkowski, prowadzi szkolenia, realizuje  testy bezpieczeństwa

Spodobał Ci się wpis? Podziel się nim ze znajomymi:



Komentarze

  1. krystian

    fajowy ten Z3Prover

    Odpowiedz
  2. Ciekawy artykuł. Wszystko działa jak należy, ale mam pytanie odnośnie samego zadania random4, czy pojawia się ono później po wykonaniu bezpośrednio dostępnych zadań z ‚return true to win’? U mnie nie ma takiego zadania na liście.

    Pozdrawiam,
    Paweł Łukasik

    Odpowiedz
    • Michał Bentkowski

      Tak, nowe zadania pojawiają się po rozwiązaniu wcześniejszych. random4 pojawi się po rozwiązaniu dziesięciu.

      Odpowiedz
  3. Maciej

    A udało Ci się rozwiązać te zadanie? Rzeczywiście potrafimy przewidzieć poprzednie i następne wartości Math.random() na firefoxie, ale poprzednia wartość mi w tym zadaniu nie przechodzi.

    Odpowiedz
    • Michał Bentkowski

      Udało się. Na swoim serwerze wystawiłem usługę, która przyjmowała trzy kolejne liczby (jak ten skrypt pythonowy) i zwracała tę, która była wcześniej.

      Żeby to pobrać z poziomu JS, użyłem XMLHttpRequest w trybie synchronicznym.

      Odpowiedz
  4. DaBomb

    Bardzo ciekawy artykuł, dzięki Michał!

    Odpowiedz
  5. zero one

    Zacny art.Bardzo dziękuję w imieniu niewielu.
    Pozdrawiam Panie Michale. :)

    Odpowiedz
  6. gggttt

    świetny artykuł

    Odpowiedz
  7. Arim

    var rand = Math.random();
    function random4(x) {
    return rand === x;
    }
    random4(rand); // => true

    // i nie trzeba pisać generatora liczb pseudolosowych… :O

    Odpowiedz
    • Michał Bentkowski

      Nie było tak prosto, bo z poziomu funkcji, którą wykonujemy nie mieliśmy dostępu do scope’u, w którym była zdefiniowana zmienna rand.

      Odpowiedz
  8. ddf

    A nie lepiej bylo by napisac jakos tak?

    fun=funkcja_razem_z przesunieciami itp

    w1=fun(a)
    w2=fun(w1)
    w3==wynik

    ile musza wynosic a by otrzymac ‚wynik’ ?

    Odpowiedz

Odpowiedz